KEP THEY

OF a WOWRING &

Lecture 10: Entropy Compression

Idea

- Color vertices of a graph randomly one by one
- If conflict, uncolor some to resolve the conflict
- Keep track of what and why is being uncolored.
- If after running for t steps, number of "keep tracks" is strictly less than number of "random one by one" colorings, there must be a good coloring.

A square in a coloring φ of a graph G is a path v_1, v_2, \ldots, v_{2k} , where $\varphi(v_i) = \varphi(v_{i+k})$. In other words, the coloring on the first half is repeated on the second half. Coloring without squares is *non-repetitive*.

Theorem 1 (Thue). Every path P_n has a non-repetitive coloring using 3 colors.

1: Find a non-repetitive coloring of P_8 .

Conjecture 2. Every path P_n has a non-repetitive list coloring using 3 colors per list.

Theorem 3. Every path P_n has a non-repetitive list coloring using 4 colors per list.

Algorithm to find a coloring φ of $P_n = v_1, v_2, \ldots, v_n$ using lists L. It also produces record R, which is a sequence of 0s and 1s.

2

10

111000111

[Z = 0100(0)]0.

- pick smallest *i*, where $\varphi(v_i)$ is not colored
- pick $\varphi(v_i) \in L$ randomly
- add 0 to R
- if $v_{i-2\ell+1}, \ldots, v_i$ is a square then
 - uncolor $v_{i-\ell+1},\ldots,v_i$
 - add ℓ times 1 to R

Note that after each run, φ is non-repetitive.

Think of t > n. Maybe way bigger.

3: Let R_t and φ_t be R and φ after t iterations of the algorithm, where no coloring of P_n was obtained. Show that from R_t and φ_t , one can reconstruct all choices that were made for $\varphi(v_i)$ during the t steps.

5: What are upper bounds on the number of possibilities for φ_t , what is the length of R_t ? How does number of 0s and 1s compare in R_t ?

6: Show that there is a bijection between R_t and lattice paths from (0,0) to (t,t) that are not going above diagonal. These are counted by the Catalan numbers $\frac{1}{t+1} \binom{2t}{t} \approx \left| \frac{4^t}{t^{3/2}\sqrt{\pi}} \right|$

7: Finish the proof by comparing the number of possible records and number of possible runs.

©€\$@ by Bernard Lidický using materials by Dan Cranston and Zdeněk Dvořák

A proper graph coloring φ is a *star coloring* if the union of every two color classes induces a star forest. In other words, vertices of every path on 4 vertices have at least 3 colors.

Related to *acyclic coloring*, where every two color-classes induce a forest.

8: Determine the star chromatic number for a path.

9: Determine the star chromatic number for the Petersen graph.

Theorem 4. If G is a graph of maximum degree at most d, then G has a star coloring using at most $\lceil 100d^{3/2} \rceil$ colors.

<i>Proof.</i> Let $q = \lceil 100d^{3/2} \rceil$ be the number of available colors and $n = V(G) $. Order the vertices v_1, \ldots, v_n in an arbitrary (but fixed) order. Notice that a path $v_i, x_1, x_2, \ldots, x_\ell$, if v_i is known can be described using d^ℓ choices. We call if $d(v_i, x_1, x_2, \ldots, x_\ell)$
We start with φ not assigning any color to any vertex and R being an empty record.
• let v_i be the uncolored vertex with smallest index
• give v_i a random color from $[q]$ and add to R record $[color]$.
• if there exists an edge uv_i , where $\varphi(u) = \varphi(v_i)$, add to R triple [Uncolor1, $d(uv), \varphi(u)$]) and uncolor both u and v_i .
• if there exists a path $v_i u_1 u_2 u_3$, where $\varphi(v_i) = \varphi(u_2)$ and $\varphi(u_1) = \varphi(u_3)$, add to R quadruple [Uncolor2, $d(v_i u_1 u_2 u_3)$ and uncolor all of $v_i u_1 u_2 u_3$.
• if there exists a path $u_1v_iu_2u_3$, where $\varphi(v_i) = \varphi(u_3)$ and $\varphi(u_1) = \varphi(u_2)$, add to R quadruple [Uncolor3, $d(v_iu_1)d(v_i, u_2u_3), \varphi(v_i), \varphi(u_1)$], and uncolor all of $u_1v_iu_2u_3$.
If there are more candidates for uncoloring pick just one (in some deterministic way). $\mathcal{M}_{\tilde{1}} = \mathcal{M}_{2} = \mathcal{M}_{2}$
Let the coloring procedure run for t steps. In each step, one vertex is color. i.e. there is a sequence of vertices

Let the coloring procedure run for t steps. In each step, one vertex is color. i.e. there is a sequence $v_1 = x_1, x_2, \ldots, x_t$ that get colored by colors c_1, c_2, \ldots, c_t during the second step of the algorithm.

©€\$© by Bernard Lidický using materials by Dan Cranston and Zdeněk Dvořák

Wt

10: How many different possibilities are the for the algorithm to run? What is the probability of one particular run? ITENATION .. q E MOLATIONS q

Let φ_t and R_t be the partial coloring and record after t steps.

11: Show that φ_t and R_t exactly determine the sequence c_1, \ldots, c_t . Hint: First determine that it gives the order $v_1 = x_1, x_2, \ldots, x_t$. Show that the colors c_1, \ldots, c_t can be also reconstructed. Notice they are not saved in step 2.

$$\begin{aligned} q_{1} &= \bigcup_{i=1}^{n} \bigcup_{i=$$

13: How many times at most *Color* and *Uncolor*? appears in R_t ? What is the number the possible sequences of these operations?

q1 q1

Coul . C* -1. M ENTIES CLUNC 1324 UNCOUR E/2 14: How many times a particular color is mentioned in R_t ? What is the number of choices?

E COLORIS MENTIONO

15: How many times a particular codes for paths appear in R_t ? What is the number of choices?

16: Combine the choices and derive what is the number of possibilities for R_t and φ_t . These are the failed runs. Calculate the probability that a run is failing after t steps, i.e. divide by the total number of runs. And finish the proof.

$$\begin{aligned} P_{t} \mathcal{L} \Psi_{t} : \left(\frac{1}{4}, \frac{1}$$