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Lecture 10: Entropy Compression

Idea

• Color vertices of a graph randomly one by one

• If conflict, uncolor some to resolve the conflict

• Keep track of what and why is being uncolored.

• If after running for t steps, number of “keep tracks” is strictly less than number of “random one by one”

colorings, there must be a good coloring.

A square in a coloring ' of a graph G is a path v1, v2, . . . , v2k, where '(vi) = '(vi+k). In other words, the

coloring on the first half is repeated on the second half. Coloring without squares is non-repetitive.

Theorem 1 (Thue). Every path Pn has a non-repetitive coloring using 3 colors.

1: Find a non-repetitive coloring of P8.

Solution:

Conjecture 2. Every path Pn has a non-repetitive list coloring using 3 colors per list.

Theorem 3. Every path Pn has a non-repetitive list coloring using 4 colors per list.

Algorithm to find a coloring ' of Pn = v1, v2, . . . , vn using lists L. It also produces record R, which is a sequence

of 0s and 1s.

• pick smallest i, where '(vi) is not colored

• pick '(vi) 2 L randomly

• add 0 to R

• if vi�2`+1, . . . , vi is a square then

– uncolor vi�`+1, . . . , vi

– add ` times 1 to R

Note that after each run, ' is non-repetitive.

2: Show that if '(vi) is colored and it creates a square, there is exactly one square.

Solution: Every square must contain vi. If there are two, one is a subset of the other
and repeats.
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Think of t > n. Maybe way bigger.

3: Let Rt and 't be R and ' after t iterations of the algorithm, where no coloring of Pn was obtained. Show

that from Rt and 't, one can reconstruct all choices that were made for '(vi) during the t steps.

Solution: Show that one can reconstruct Rt�1 and 't�1. If last number of Rt�1 is 0,
just uncolor the last vertex. Otherwise remove the sequence 0111. . . 1s in R, duplicate
colors in 't and uncolor the last one.

4: Show that there are 4
t
possible runs of the algorithm for t steps.

Solution: In each step, there are 4 choices for color.

5: What are upper bounds on the number of possibilities for 't, what is the length of Rt? How does number

of 0s and 1s compare in Rt?

Solution: 't assigns to each of n vertices color in it lists of size 4 or no color at all.
Hence 5 choices per vertex which gives 5n options.
R has t zeros and number of 1s is at most the number of 0s. Hence R has length at
most 2t.

6: Show that there is a bijection between Rt and lattice paths from (0, 0) to (t, t) that are not going above

diagonal. These are counted by the Catalan numbers
1

t+1

�2t
t

�
⇡ 4t

t3/2
p
⇡

Solution:

7: Finish the proof by comparing the number of possible records and number of possible runs.

Solution: There are 4t runs.
There are 5n 4

t

t3/2
p
⇡
possible records. If n is constant, this is o(4t) so eventually the

number of records will be smaller than the number of possible runs. Hence there must
be a successful run.
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A proper graph coloring ' is a star coloring if the union of every two color classes induces a star forest. In
other words, vertices of every path on 4 vertices have at least 3 colors.

Related to acyclic coloring, where every two color-classes induce a forest.

8: Determine the star chromatic number for a path.

Solution: One needs 3 colors

9: Determine the star chromatic number for the Petersen graph.

Solution: still 4 colors needed

Theorem 4. If G is a graph of maximum degree at most d, then G has a star coloring using at most d100d3/2e
colors.

Proof. Let q = d100d3/2e be the number of available colors and n = |V (G)|. Order the vertices v1, . . . , vn in an
arbitrary (but fixed) order.

Notice that a path vi, x1, x2, . . . , x`, if vi is known can be described using d` choices. We call if d(vi, x1, x2, . . . , x`)

We start with ' not assigning any color to any vertex and R being an empty record.

• let vi be the uncolored vertex with smallest index

• give vi a random color from [q] and add to R record [color].

• if there exists an edge uvi, where '(u) = '(vi), add to R triple [Uncolor1, d(uv),'(u)], and uncolor both
u and vi.

• if there exists a path viu1u2u3, where '(vi) = '(u2) and '(u1) = '(u3), add toR quadruple [Uncolor2, d(viu1u2u3),'(vi),'(u1)],
and uncolor all of viu1u2u3.

• if there exists a path u1viu2u3, where '(vi) = '(u3) and '(u1) = '(u2), add to R quadruple
[Uncolor3, d(viu1)d(vi, u2u3),'(vi),'(u1)], and uncolor all of u1viu2u3.

If there are more candidates for uncoloring pick just one (in some deterministic way).

Let the coloring procedure run for t steps. In each step, one vertex is color. i.e. there is a sequence of vertices
v1 = x1, x2, . . . , xt that get colored by colors c1, c2, . . . , ct during the second step of the algorithm.
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10: How many di↵erent possibilities are the for the algorithm to run? What is the probability of one particular
run?

Solution: qt possible runs. One particular run has probability q�t.

Let 't and Rt be the partial coloring and record after t steps.

11: Show that 't and Rt exactly determine the sequence c1, . . . , ct. Hint: First determine that it gives the
order v1 = x1, x2, . . . , xt. Show that the colors c1, . . . , ct can be also reconstructed. Notice they are not saved
in step 2.

Solution:

12: What is the number of possibilities for 't?

Solution: (q + 1)n

13: How many times at most Color and Uncolor? appears in Rt? What is the number the possible sequences
of these operations?

Solution: Color appears t times and Uncolor? at most t/2 times since there are
always at lest 2 uncolored vertices.
This gives at most 43t/2 choices.

14: How many times a particular color is mentioned in Rt? What is the number of choices?

Solution: At most t/2 times since there are always at lest 2 uncolored vertices for 1
color or 4 vertices for 2 colors.
This qt/2 choices.

15: How many times a particular codes for paths appear in Rt? What is the number of choices?

Solution: At most t/2 times appear uncoloring of 2 vertices with 1 d needed At most
t/4 times appear uncoloring of 4 vertices with 3 d needed. The d codes are needed at
most 3t/4 times. This gives d3t/4 choices.
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16: Combine the choices and derive what is the number of possibilities for Rt and 't. These are the failed
runs. Calculate the probability that a run is failing after t steps, i.e. divide by the total number of runs. And
finish the proof.

Solution: Number of failed runs

(q + 1)n · 43t/2 · qt/2 · d3t/4

Probability of a failed run

Fail  (q + 1)n · 43t/2 · q�t/2 · d3t/4

= (q + 1)n · 43t/2 ·
⇣
100d3/2

⌘�t/2
· d3t/4

= (q + 1)n · 43t/2 · 100�t/2 = (q + 1)n ·
�
4�3

��t/2 · 100�t/2

= (q + 1)n · (25/16)�t/2

The last term goes to 0 as t goes to infinity. Hence there is a non-zero chance for a
successful run for large t.
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